PADRÃO TÉCNICO

P.383 / 2

MEMORIAL DESCRITIVO

QUADRO DE COMANDO E PROTEÇÃO DE MOTOR - QCM PARA POÇO PROFUNDO COM SOFTSTARTER

SUMÁRIO

1	DII	RET	RIZES PARA UTILIZAÇÃO DESTE PROJETO PADRÃO	2				
	1.1	Intro	odução	2				
	1.2	Cor	onsiderações para utilização					
2	ME	EMO	RIAL DESCRITIVO	3				
	2.1	Pro	Programa aplicativo do CLP					
	2.2	Des	scritivo funcional	4				
	2.2	.1	Modo de operação MANUAL (local)	4				
2.2		.2	Modo de operação AUTOMÁTICO	5				
		.3	Operação do conjunto motobomba pela IHM do softstarter	7				
	2.2	.4	Atuação do botão emergência	7				
2.2.		.5	Bloqueio de partida	7				
	2.3	Sist	tema de Telemetria	8				
	2.4	Оре	eração Remota	8				
	2.5	Cor	nissionamento e testes de comunicação	8				
	2.6	Relação de Entradas e Saídas do CLP						
	2.7	Pla	nilha de Mapeamento MQTT	10				

1 DIRETRIZES PARA UTILIZAÇÃO DESTE PROJETO PADRÃO

1.1 Introdução

A documentação que compõe o projeto do Quadro de Comando e Proteção de Motor – QCM Padrão Técnico P.383 é composta deste memorial descritivo, da folha de dados, dos diagramas de força, funcional e layout além das prescrições das normas COPASA T.255 e T.263.

Este projeto padrão deve ser utilizado para a fabricação de Quadro de Comando e Proteção de Motor – QCM para poços profundos utilizando softstarter com alimentação trifásica e acionamento de 1 (um) conjunto motobomba trifásico. O quadro deve ser fornecido com um Controlador Lógico Programável (CLP) programado para acionamento do poço conforme requisitos deste memorial descritivo. A esse CLP, é conectado um modem celular para aquisição de dados de telemetria do poço para monitoramento remoto no Sistema Integrado de Supervisão da Copasa, o Copasis. A transmissão de dados deve ser realizada por meio do protocolo MQTT, utilizando rede de telefonia celular em APN privada e dedicada da COPASA.

1.2 Considerações para utilização

Cabe ao fabricante/montador do painel, realizar o assentamento deste projeto padrão, sendo, portanto, responsável pelo dimensionamento de todos os componentes internos, referente à capacidade de condução de corrente, suportabilidade à elevação de temperatura, suportabilidade à curto circuito, isolamento elétrico e proteções elétricas. Desta forma o fabricante deve recolher Anotação de Responsabilidade Técnica - ART, junto ao CREA, referente ao projeto e fabricação dos painéis.

Todo o projeto e montagem devem atender as diretrizes preconizadas nas normas técnicas da ABNT, da COPASA (dentre as quais cita-se a norma de painéis T.255 e T.263) e NR10.

O projeto construtivo dos painéis elétricos deve ser submetido à análise da Gerência de Desenvolvimento de Projetos da COPASA e somente estarão liberados para construção após emissão de Parecer Técnico de Aprovação.

Os projetos somente serão analisados quando apresentados juntamente com ART do projeto e fabricação.

2 MEMORIAL DESCRITIVO

2.1 Programa aplicativo do CLP

O CLP será responsável pelo controle do conjunto quando em modo "AUTOMÁTICO" e comunicação com o sistema de telemetria. O programa deve ser desenvolvido com todas as rotinas necessárias ao controle e monitoramento do poço, que deve conter, no mínimo, as seguintes rotinas:

- a. Aquisição e tratamento da medição de nível do poço;
- **b.** Aquisição e tratamento da medição de reservatório à jusante (entrada analógica);
- **c.** Aquisição e tratamento da medição da vazão de saída do poço (entrada analógica);
- **d.** Comando de partida e parada do conjunto em função do nível do reservatório à jusante;
- **e.** Bloqueio de partida e intertravamento do funcionamento do conjunto em função dos sinais de falha no softstarter, botão de emergência e proteção de sucção;
- f. Monitoramento do nível dos tanques de produtos químicos;
- g. Monitoramento do modo de operação selecionado;
- **h.** Monitoramento das grandezas elétricas disponibilizadas pelo softstarter, utilizando comunicação serial Modbus RTU.
- i. Monitoramento de grandezas elétricas e de processo, status operacionais e falhas para, com envio destas variáveis ao Sistema Integrado de Supervisão da Copasa Copasis, utilizando protocolo MQTT.
- j. As rotinas de malha fechada e comunicação com sistema de rádio via protocolo Modbus somente deverão ser implementadas quando o escopo de fornecimento compreender o fornecimento e instalação do painel e houver sistema de rádio com comunicação modbus.

Deve ser fornecido à COPASA o software de programação do CLP (compatível com Windows 10 e superior) para intervenções futuras, bem como o programa fonte do CLP sem restrições de acesso, programação e alterações.

2.2 Descritivo funcional

O projeto do QCM foi desenvolvido de forma que o poço possua mais de uma opção de automatismo de recalque, garantindo flexibilidade à instalação e operação do sistema. Além disso, é possível o monitoramento remoto dos sinais interligados ao quadro através de CLP, que faz o envio das informações operacionais e alarmes através do protocolo MQTT via rede celular (APN privada e dedicada da COPASA). O SimCard para estabelecer a comunicação celular será fornecido pela COPASA.

O quadro deve, obrigatoriamente, ser fornecido com CLP programado pelo fornecedor do painel seguindo os requisitos funcionais descritos a seguir.

Observa-se que a automatismo descrito a seguir deve ser implantado para os casos onde o fornecimento compreende exclusivamente o fornecimento do painel.

Para os casos onde o escopo de fornecimento incluir o fornecimento e instalação do painel, o automatismo a ser implantado deve explorar as demais funcionalidades do painel, como por exemplo, controle em malha fechada e comunicação OPC UA por meio de túnel VPN IPSEC. Neste caso, o automatismo deve incluir as funcionalidades descritas na regulamentação especifica do serviço de instalação do painel.

A seleção de operação Manual ou Automática do conjunto motobombas é feita por meio de uma chave seletora de 3 (três) posições (MANUAL – DESLIGADA – AUTO) instalada no QCM.

2.2.1 Modo de operação MANUAL (local)

A partir da chave seletora na posição "MANUAL" é possível realizar a partida ou parada do conjunto motobomba por meio das botoeiras (individuais) de comando LIGA e DESLIGA, respectivamente, instaladas na porta do QCM.

O comando manual só deve ser possível se houver o atendimento às condições de proteção do sistema: Botão de emergência não estar acionado, não houver falta de fase, não houver falha no softstarter e proteção de sucção não acionada, sinal obtido através do relé de nível (RN1).

2.2.2 Modo de operação AUTOMÁTICO

Quando na posição "AUTOMÁTICO" o CLP, automaticamente, efetua a partida e parada do conjunto, considerando os setpoints de nível alto para parada e nível baixo para partida.

O comando automático só deve ser possível se houver o atendimento às condições de proteção do sistema: Botão de emergência não estar acionado, não houver falta de fase, não houver falha no softstarter e proteção de sucção não acionada, sinal obtido através do relé de nível (RN1).

Quando na posição "AUTOMÁTICO", o CLP do QCM efetua a partida e parada do conjunto em função do nível do reservatório à jusante, que pode estar no mesmo local ou em local geograficamente distinto e distante do poço. O programa aplicativo do CLP, que deve obrigatoriamente ser desenvolvido, implementado, comissionado e testado em fabrica pelo fornecedor do painel, deve prever a comutação automática entre os cenários de operação descritos a seguir.

O programa aplicativo do CLP deve prever o automatismo do poço com base no nível do reservatório a jusante (reservatório, tanque de contato ou poço de sucção abastecido pelo poço). Esse automatismo deve operar em modo *failback*, ou seja, na ausência da opção de automatismo 1 (um), o CLP deve comutar automaticamente para a opção de automatismo 2 (dois) e, em caso de falha comutar automaticamente para o modo degradado, onde a operação é realizada por meio de timer horário. A seguir são descritos os modos de automatismo que devem, <u>obrigatoriamente</u>, ser implementados no CLP pelo <u>fornecedor</u> do painel:

a. Opção 1: Transmissão de comando via rádio. Neste modo, a informação de nível é obtida pelo CLP a partir de um link de rádio entre o poço e o reservatório. O link pode ser por meio de rádio ethernet, serial ou radio I/O. O acionamento via rádio I/O poderá ser por meio de uma entrada analógica ou por meio de chave boia a partir de entradas discretas. Primeiramente o CLP deverá verificar se o link de rádio está ativo a partir da entrada digital ED12, ativa. Estando o link ativo, o CLP deve acionar a saída SD1. Em seguida deverá verificar se o sinal da entrada analógica EA3 é valido (diagnóstico de canal aberto), sendo atribuído a esse canal o range de 0 a 1000. Havendo sinal valido na entrada analógica EA3, o CLP fará o acionamento do poço (SD2) em função desse sinal, devendo fazer o acionamento do poço para o valor de

300 e desligar quando atingir 800. Para o caso em que a entrada analógica EA3 não seja válida, sinal aberto, o CLP deve automaticamente considerar o acionamento do poço a partir da ED5. Caso ocorra falha de comunicação do rádio, ED12 desativada, o automatismo dever ser comutado, automaticamente para opção 2. O automatismo via rádio ethernet ou serial, por depender das características do rádio, somente deverá ser implementado na lógica, quando o escopo incluir o fornecimento e instalação do painel, com comunicação via rádio ethernet.

- **b.** Opção 2: Automatismo utilizando o nível do reservatório remoto, por meio do protocolo MQTT, utilizando rede de telefonia celular em APN privada e dedicada COPASA. Neste modo de operação, o CLP deverá sobrescrever (subscribe) o nível do reservatório e realizar o acionamento do poço em função desse nível. O programa deve considerar que o range do nível será de 0 a 1000 (valores negativos devem ser considerados falha de comunicação), deve fazer o acionamento do poço (saída SD2) para o valor de 300 e desligar quando atingir 800. O CLP deve possuir lógica interna que verifique a comunicação do mesmo com o broker MQTT, e se a remota do reservatório está com comunicação ativa, e acionar a saída SD1. A verificação de remota do reservatório ativa será por meio do tópico de Last Will, onde o valor de payload em 192 indica comunicação ativa, e 24, falha de comunicação. Deve ser previsto um bloco de delay de 2 (dois) minutos para que a saída digital de comunicação ativa seja ativada, com o objetivo de evitar chaveamento excessivo em caso de intermitências de comunicação celular. Da mesma forma, em caso de falha de comunicação, a lógica deve aguardar 5 (cinco) minutos antes de desativar a saída, com o objetivo de deixar o sistema resiliente a falhas momentâneas de comunicação celular. A lógica deve ainda monitorar a frequência de recebimento do tópico de nível, de modo que, caso o tópico fique por um período superior a 30 (trinta) minutos sem receber publicação, seja considerado falha de comunicação. Caso ocorra falha de comunicação com o sistema de telemetria via telefonia celular, o automatismo deve ser comutado automaticamente para opção 3 de automatismo.
- c. Opção 3: Automatismo local via timer. Este é o modo de operação degradado, ou seja, exclusivamente no caso de falha do sistema de rádio e/ou comunicação celular. Neste modo, a saída SD1 é mantida desativada, habilitando o automatismo via timer, que é realizado sem passar pelo CLP, ou seja, exclusivamente pelo timer (RTC1) e logica de contatores, conforme desenho funcional do painel.

A partir da lógica descrita na opção 1, é possível fazer o acionamento do poço quando o reservatório estiver no mesmo local, ou seja, sem a necessidade de rádio e sem necessidade de alteração da lógica. Para isso, deve ser realizada ligação direta entre os bornes X1.7 e X1.9.

O projeto do painel prevê a possibilidade de implementação de lógicas de controle mais robustas, com controle e monitoramento de sistema de dosagem em malha fechada. Porém, por se tratar de aplicação específica, onde faz-se necessário o conhecimento prévio do sistema, o desenvolvimento de lógicas de controle em malha fechada não será escopo de fornecimento da lógica de CLP, quando o escopo de fornecimento for exclusivamente o fornecimento do painel.

Nos casos de contratações cujo objeto contemple, além do fornecimento do quadro, o fornecimento e instalação de sistema de rádio com comunicação via rede, o desenvolvimento da lógica de comunicação entre CLP e sistema rádio é escopo do programa de CLP a ser desenvolvido.

2.2.3 Operação do conjunto motobomba pela IHM do softstarter

O softstarter deve ser programado para não permitir, em hipótese alguma, o acionamento do softstarter pela IHM. A programação da IHM deve ser protegida por senha, o softstarter dever sair de fábrica com a senha padrão: 1234. O objetivo da senha não é impedir o acesso ao menu de programação e sim garantir que as alterações estão sendo realizadas de forma consciente.

2.2.4 Atuação do botão emergência

O botão de emergência está instalado na porta do QCM e atuará na entrada digital do CLP (de forma que o automatismo seja bloqueado) e também diretamente na alimentação do circuito de comando (ou em entradas discretas) dos softstarter, provocando o desligamento por inércia do conjunto em operação. O CLP deve realizar o envio do status de emergência atuada para o Copasis.

2.2.5 Bloqueio de partida

Independentemente da origem do comando, deve ser feito o bloqueio da partida do conjunto motobomba nas condições de nível mínimo no poço, proteções elétricas do respectivo softstarter atuadas, botão emergência atuado.

2.3 Sistema de Telemetria

O CLP deverá enviar os dados operacionais do poço para monitoramento remoto, via Copasis, utilizando protocolo MQTT e comunicação via telefonia celular, conforme planilha de mapeamento apresentada no item 2.7 deste documento.

Os dados de monitoramento serão encaminhados para o broker MQTT disponível na "nuvem" privada COPASA que irá disponibilizar as informações para monitoramento no Sistem Integrado de Supervisão da COPASA – Copasis.

Desta forma, o CLP deve ser programado para disponibilizar via protocolo MQTT as seguintes variáveis:

- a. Nível no poço;
- **b.** Nível do reservatório;
- c. Vazão de saída do poço;
- d. Poço Ligado/Desligado;
- e. Nível baixo no tanque de cloro;
- f. Nível baixo no tanque de flúor;
- **g.** Falha no softstarter;
- h. Modo de operação;
- i. Botão de Emergência atuado;
- j. Falta de energia QCM;
- **k.** Falha UPS:
- I. Intrusão na Sala Elétrica ou Porta do Painel Aberta;
- **m.** Tensões do softstarter:
- Corrente do softstarter.

2.4 Operação Remota

O presente padrão técnico possui ainda tecnologia que permite a implementação futura de operação remota via telefonia celular, por meio de modem com redundância de operadora e comunicação VPN IPSEC (devidamente homologado para operação com o concentrador de VPN da COPASA) e CLP com comunicação via protocolo OPC UA.

2.5 Comissionamento e testes de comunicação

Os critérios de mapeamento, requisitos de configuração e critérios de criação de tópicos

serão fornecidos pela COPASA, devendo o integrador fazer a solicitação pelo e-mail: automacao@copasa.com.br.

As atividades de comissionamento e testes de comunicação também deverão ser solicitadas e agendadas no email: automacao@copasa.com.br.

2.6 Relação de Entradas e Saídas do CLP

LOCAL DE	ENTRADAS E SAÍDAS DISCRETAS							
AQUISIÇÃO		ENTRADAS	SAÍDAS					
	ED1	Poço ligado	SD1	Comunicação ativa				
	ED2	Softstarter sem falhas	SD2	Comando liga/desliga				
	ED3	Operação automática SD3 Comano		Comando manual/auto				
	ED4	Proteção de sucção	Reserva					
	ED3	Comando liga boia / rádio IO1	-					
	ED6	Nível baixo no tanque de Cloro	-	-				
	ED7	Nível baixo no tanque de Flúor	-	-				
QCM	ED8	Reserva	-	-				
QCIVI	ED9	Reserva	-	-				
	ED10	Reserva	-	-				
	ED11	Reserva	-	-				
	ED12	Comunicação ativa – Rádio IO ²	-	-				
	ED13	Botão de emergência	-	-				
	ED14	Falta de fase/energia	-	-				
	ED15	Intrusão sala elétrica	-	-				
	ED16	Alarme UPS	-	-				
LOCAL DE	ENTRADAS E SAÍDAS ANALÓGICAS							
AQUISIÇÃO	ENTRADAS			SAÍDAS				
	EA1	Vazão de saída do poço	SA1	Reserva				
QCM	EA2	Nível do poço	SA2	Sinal de referência para bombas dosadoras				
	EA3	Nível do reservatório	-					
	EA4	Reserva	-	-				

¹ Quando for utilizado chave boia ou Rádio IO para automatismo de recalque.

² Deverá ser feita ligação direta entre os bornes X1.7 e X1.9 do QCM nos casos de automatismo com chave boia.

2.7 Planilha de Mapeamento MQTT

O CLP deverá enviar os dados operacionais do poço para monitoramento remoto, via Copasis, utilizando protocolo MQTT e comunicação via telefonia celular, conforme planilha de mapeamento apresentada abaixo. Para testes de inspeção de painéis em contratos exclusivamente de fornecimento, o fornecedor deverá entrar em contato pelo e-mail automacao@copasa.com.br para solicitar a definição de padrão dos tópicos de comunicação.

ESTRUTURA DO ENDEREÇO

RXXXX/RTUSSSS/YYYWWW/ZZNN/KKT

XXXX = Sisloc (Cidade)

SSS = Número sequencial da remota

YYY = Designação do tipo de unidade (POP, ETA, ETE, EEE, EAT, EAB, RAP, REL, BST) conforme tag SAP

WWW = Número sequencial da unidade conforme tag SAP

ZZ= Identificação do Instrumento e/ou variação baseada na norma ISA 5.1

NN = Número sequencial

KK = Tipo do Sinal (AI (Corrente), ST (Status), MB (Modbus))

T = Identificador do tipo do dado (I - Inteiro, F - Float, W - Word, D - Double Word, B - Byte, X - Bit)

CRITERIOS PARA COMUNICAÇÃO MQTT

- 1 As variáveis devem ser enviadas com duas casas decimais convertidas para inteiro, para otimização do fluxo de dados;
- 2 Envio das variáveis que sofrerem alteração;
- 3 Envio de todas variáveis (check de integridade) a cada 15 minutos, independente de variação;
- 4 Envio de PINGREQ a cada 5 minutos (keepalive);
- 5 O dispositivo deve permitir ainda o envio de todas variáveis (pedido de integridade) a partir de um comando do supervisório;
- 6 Usar histerese em relação à última medição enviada para envio das variáveis analógicas.
- 7 Solicitar as informações de endereço IP do broker, porta de comunicação, usuário e senha à GNDI através do e-mail automacao@copasa.com.br.

SISLOC	Cidade	Remota	Unidade	Tag	Volume	Nível extravasão	Range			Potência	
	P.383										
	Cidade RTU000		POP000_P383	POP000		4mA - 0m 20mA - 10m					
	IP Modem:	N/A	IP Remot	a: N/A	IP Broker:	000.000.000.000		Porta:			0000
	Cliente Id: 0000RTU00		0 Usuár	o: usuario	Senha:	senha		Last Will Msa		Last Will Msg:	24
	Programa:	0000RTU000_				Evento de Envio:			Variação		
	Tópico				'ariável			bit	CLP	Сатро	Supervisório
	Торісо	mari	Poço Ligado (Ligado 1: Desligado 0)				0	100	campo	Supervisorio	
			Poço - Inversor/softstarter/djmotor/relé térmico sem falha (Sem falha 1 : Com falha 0)				1	101			
			Automático / Manual (Automático 1 : Manual 0)				2	102			
			Proteção de sucção					3	103		
			Nível Baixo Poço					4	104		
			Nível Baixo Tanque de Cloro					5	105		
			Nível Baixo Tanque de Flúor					6	106	publish	subscriber
			Reserva					7	107		
	R0000/RTU000/POP000/Y	/U01/STW	Reserva				8	108			
0000			Reserva					9	109		
			Reserva					10	110		
			Falta de fase / Falta de energia (sem falha 1: com falha 0)				11	111			
			Emergência geral (sem falha 1 : com falha 0)				12	<i>l</i> 12			
			Falta de fase / Falta de energia (sem falha 1: com falha 0)					13			<i>I</i> 13
			Intrusão (fechada 1 : aberta 0)				14	114			
			Falha UPS1 (sem falha 1: com falha 0)				15	115			
	R0000/RTU000/POP000/F	T01/AIW (ou MBW)	Vazão — Valor em litros por segundo — l/s, convertido em escala de 0 a 1000				-	AI0	publish	subscriber	
	R0000/RTU000/POP000/F	Q01/TTD	Vazão Totalizada – Valor em metros cúbicos – m³				-	-	publish	subscriber	
	R0000/RTU000/POP000/L	T01/AIW	Nível Poço – Valor em metros – m, convertido em escala de 0 a 1000				-	AI1	publish	subscriber	
	R0000/RTU000/REL000/LT	T01/AIW	Nível Reservatório – Valor em metros - m, convertido em escala de 0 a 1000				-	AI2	publish	subscriber	
	R0000/RTU000/POP000/I	T01/MBW	Corrente do motor – Valor em Ampere – A					Rede	publish	subscriber	
	R0000/RTU000/POP000/E	ET01/MBW	Tensão de saída do driver – Valor em Volts – V				-	Rede	publish	subscriber	
	R0000/RTU000/LASTWILL	•	Last Will and Testament - Informa ao broker mensagem a ser enviada em caso de desconexão.				-	-	publish / subscriber	subscriber	
	R0000/RTU000/INTEG		Pedido de Integridade (remota envia todas as variáveis)				-	-	publish / subscriber	publish	
	R0000/RTU000/LASTWILL		Last Will and Testament - Solicita ao broker mensagem de Last Will da remota do reservatório à jusante.				-	-	subscriber	publish	
	R0000/RTU000/INTEG		Pedido de Integridade dos dados da remota do reservatório à jusante				-	-	publish	subscriber	
REMOTA	Versão Soft	ware (R00)	Firmware Gateway N° Chip					reway			
TACCAS											
TAG SAP	TAG		TAG G			Geolocalização			l l		
	0000-P0		POP0000			X'XX.XX"O XX°XX'XX.X					
0000-REL000			RSV00000000								